

 NIST White Paper

Mobile Application Security Exercise (MASE)

Final Report

Michael Ogata

Software and Systems Division

Information Technology Laboratory

May 22, 2018

ii

Abstract

Mobile applications have become an integral part in the mission of the federal government and public

safety. There exist many techniques that seek to assure these applications are free from software bugs and

vulnerabilities. However, a unified list of capabilities that define these techniques is not defined for mobile

applications. This paper, through a partnership with industry, seeks to be the first set in defining this list by

examining the current state-of-the-art of the analysis capabilities of mobile application vetting services.

Keywords

Apps; Applications; Mobile Apps; Mobile Application; Public Safety; Software Assurance; Vetting;

Acknowledgements

The author would like to thank the individuals and organizations that participated in the effort (in
alphabetical order):

• AppCritique https://appcritique.boozallen.com

• Appthority, Inc https://www.appthority.com/

• NowSecure http://www.nowsecure.com/GO/NIST/MASE

The author would also like to thank Lolita Boumelit and Vadim Okun for their support in the formulation
and execution of the MASE project. Finally, the author would like to thank Jeff Cichonski, Barbara
Guttman, and Rose Linares for their help in editing and arranging the document.

Disclaimer

Any mention of commercial products or reference to commercial organizations is for information only; it

does not imply recommendation or endorsement by NIST, nor does it imply that the products mentioned

are necessarily the best available for the purpose.

.

https://appcritique.boozallen.com/
https://www.appthority.com/
http://www.nowsecure.com/GO/NIST/MASE

iii

Table of Contents

1 Introduction .. 1

1.1 Background ... 1

1.2 Purpose ... 1

1.3 Intended Audience .. 1

1.4 Document Structure .. 2

2 Project Overview .. 2

2.1 MASE Methodology Overview ... 2

2.2 Test Case Overview .. 3

2.3 Vendor Participation .. 3

2.4 Mobile Application Vetting Service Features .. 3

2.5 Mobile Application Analysis ... 4

3 Mobile Application Vetting Service Features ... 4

3.1 Analysis Methods and Methodologies ... 4

3.2 Application Traits ... 7

4 Mobile Application Vetting Feature Analysis ..10

4.1 Analysis 1: Feature Vendor Coverage ... 11

4.2 Analysis 2: Application Trait Identification Per Application 15

5 Conclusion 19

5.1 Recommendations and Future Work ... 19

5.1.1 Building mobile application test cases ... 19

5.1.2 Software Assurance Tool Exposition (SATE) for Mobile .. 19

List of Appendices

Appendix A - Glossary ..20

Appendix B - References ..21

1

1 Introduction

1.1 Background

The importance of mobile applications in both the public and private sector has been growing without

question. Most domestic commercial mobile application stores do their best to weed out malicious

applications before they are released to the public. These stores also continue to improve the labeling

provided along with each mobile application that describes pertinent behaviors the mobile application

expresses. However, the resilience and security requirements of both the private and public sectors are more

constricting than what is provided by default in the domestic commercial mobile application stores.

Furthermore, mobile applications that are purpose built for use within a sector or organization may not be

placed in the public application stores, thereby avoiding any safeguards these stores provide.

These facts necessitate a review process to evaluate mobile applications for malware, software

vulnerabilities, configuration vulnerabilities, and undesirable functionality. Mobile application vetting

defines the process used by an organization to test that an application meets an organization’s security

requirements [6]. A mobile application vetting service is an entity, external to the end user’s organization,

that provides this mobile application testing.

Industry has risen to meet the needs of mobile application vetting. The ecosystem of strategies,

methodologies, and approaches is very diverse [7]. However, comparing the strengths and weaknesses of

players in this space is difficult as there does not exist a cohesive set of features that can be used to describe

the capabilities and techniques of mobile application vetting services.

1.2 Purpose

The goal of the Mobile Application Security Exercise (MASE) Project is to gain a better understanding of

the state-of-the-art in mobile application vetting tools. The project’s main goal is to:

• Identify a list of mobile application vetting service features (capabilities) that can be used to

describe the analysis capabilities of vetting services.

• Perform a preliminary and informal analysis of the mobile application analysis conducted by

participating tools to gain a better understanding of the uniformity and/or cohesiveness of

mobile application vetting service features among the participants.

1.3 Intended Audience

This document is intended for any organization evaluating their stance on mobile application vetting as part

of their cyber security posture. The language in this document is meant for non-technical readers. As such,

it may be particularly useful for organizations who are relatively new to mobile applications and mobile

application vetting; especially those who may be tasked to incorporate new mobile application solutions

such as the federal government and public safety.

Because of their domain knowledge, mobile application vetting service providers may also find this

document useful. The field of mobile application security is nascent and evolving. NIST welcomes and

encourages any input that may advance the correctness, clarity, and completeness of any of the information

found in this document.

2

1.4 Document Structure

The remainder of this document details the MASE project. It is structured as follows:

• Project Overview – This section describes the overall process undertaken during the MASE project.

It details the mobile applications used as test cases during the evaluation process of the project, the

evaluation undertaken by the project’s participants, and finally the process used to determine the

final vetting service feature set generated by this effort.

• Mobile Application Vetting Service Features – This section defines the two features subcategories

identified as part of the project. It then goes on to list and define each of the features identified.

• Mobile Application Vetting Feature Analysis – This section contains the output of the two analyses

conducted as part of this exercise.

• Conclusion– This section contains final conclusions of the paper. It also identifies future work that

needs to be undertaken in the space of mobile application vetting.

2 Project Overview

2.1 MASE Methodology Overview

The primary goal of the MASE is to gain a baseline understanding of the capabilities of mobile application

vetting services. To achieve this goal, the exercise was devised to formulate a generalized list of analytic

capabilities, from here on referred to as features, that can be used to describe the output of each of the

vendor’s solutions.

The MASE was divided into 3 phases. Phase 1 consisted of an internal NIST review of mobile application

binaries to be used as test cases for the analysis phase. In Phase 2, these binaries were provided to each of

the participating vetting services. The vetting services were asked to provide a single report for each

application reviewed. In Phase 3 all reports were aggregated and reviewed for feature identification. Figure

1 illustrates the 3 phases of the exercise.

Figure 1 MASE General Overview

3

2.2 Test Case Overview

A set of 18 applications, 9 targeting Google Android and 9 targeting Apple iOS, was selected as the corpus

for the exercise. A full list of the test cases can be found in Table 1 and Table 2. The tables assign a numeric

ID to each of the test cases. For brevity, the test cases are referred to by ID for the remainder of the

document.

It should be noted that there is no established ground truth for the test cases. Vetting services were analyzed

for consistency. The apps in the test corpus were not independently assessed to see if a given feature is

present in the app.

Table 1 Android Application Test Cases

Application Name and Version Application ID

Facebook 46.0.0.26.153 1

GO Launcher 2.20 2

Messenger 90.0.0.14.70 3

Psafe Total 3.2.4 4

TextNow 4.27.0 5

 Skype 7.18.0.505 6

 Slacker Radio 6.1.27 7

 Uber 3.117.3 8

 Z Camera 2.37 9

Table 2 iOS Test Cases

Application Name and Version Application ID

 Google Chrome 57.0.2987.137 10

 Google Drive 4.2017.10207 11

 Home Station Instrumentation Training System 3.0 12

 Layout from Instagram 1.2.4 13

 Marriott International 6.1.1 14

 OfferUp 2.10.10 15

 Skype 6.34.1 16

 YouTube Music 1.7 17

Twitter 6.75 18

2.3 Vendor Participation

The MASE project invited 9 mobile application vetting services to participate in the exercise. 4 vendors

contributed tools for use in the project. The purpose of the exercise was not to evaluate the performance of

the participants. As such, all participant names have been removed in this report except when explicitly

requested by the participant.

2.4 Mobile Application Vetting Service Features

As part of the MASE project, each participant submitted a report for each application in the test case set.

NIST researchers examined the submitted reports to identify and define the set of capabilities that can be

4

used to describe mobile application vetting analysis. Each capability, from this point referred to as a mobile

application vetting service feature, acts as a label for a common reporting subject, metric, or factoid found

among the mobile application reports. For this report, a feature is defined as follows:

 A mobile application vetting service capability represented as either an analysis

method/methodology or the ability to identify a particular mobile application trait

The vetting service feature list described in this document is broken into two subsections:

• Methods/methodology – describes qualitative actions taken by the vetting services. For example,

it was common for services to provide an itemized list of each of the permissions requested by the

application.

• Application trait – describes identified characteristics an application exhibits. These make up the

bulk of the identified service features and encapsulate things like identifying system services the

application interacts with, determining if the application contains a hard-coded password, etc.

Vetting service feature compilation was a cumulative and recursive exercise. Reports were organized into

sub groups, first by vendor and then by target operating system. For each subgroup, a list of features was

compiled. Combining both feature lists (Android and iOS) for each vendor yielded a comprehensive list of

all the features for each vendor. Finally, by combining and then normalizing each vendor’s feature list, a

comprehensive feature list for the exercise was generated.

2.5 Mobile Application Analysis

Once the feature list was extracted, two comparisons were conducted:

Analysis 1: Feature Vendor Coverage – This analysis illustrates the frequency with which the identified

mobile application vetting service features occurred among the participating tool vendors.

Analysis 2: Application Trait Identification Per Application – This analysis describes the number of

participating vendors that agree on the existence of a mobile application vetting service feature within a

mobile application test case. It is meant to illustrate consensus and disagreements about feature existence

between vendors on a per app level.

3 Mobile Application Vetting Service Features

This section provides a detailed list and definitions of the two subtypes of mobile application vetting service

feature identified in the MASE project: Analysis Methods/Methodologies and Application Traits.

3.1 Analysis Methods and Methodologies

Feature Name Feature Definition

App Integrity Measure The application’s certificate and/or digital signature are valid.

Assigns App Score The application vetting service applies either a quantitative or

qualitative score to the application. This application score is meant

to represent the degree to which an application is free from

vulnerabilities and/or threats.

5

Feature Name Feature Definition

Enumerates App Permission Requests The application vetting service enumerates application

permissions requested by the application as part of the application

report.

Enumerates Package Filenames The mobile application vetting service enumerates all files

associated with the application as part of the application report.

Evaluates TLS operations The mobile application vetting service evaluates the application’s

use of transport layer security. This can include:

• Evaluating the application’s use of certificate pinning

• Evaluating the application’s acceptance criteria for

hostnames, certificates, and/or certificate authorities

Extracts raw string data The mobile application vetting service enumerates human readable

text as part of the application report.

Flags potential PII exposure The mobile application vetting service explicitly identifies the

application’s potential to expose Personally Identifiable

Information (PII).

Flags Potentially Undesirable Behavior As part of the application report, the mobile application vetting

service identifies behavior that, while not an explicit weakness or

vulnerability, may be considered against best practice or risky.

Provides App Descriptive Metadata The application vetting service provides app metadata either

extracted from the application binary itself or from the application’s

origin app store as part of the report.

References Official Regulatory Classifier:

CVSS

The mobile application vetting service maps vulnerabilities,

completed diagnostics, and/or other reporting facets to the

Common Vulnerability Scoring System (CVSS) (Common

Vulnerability Scoring System SIG, n.d.).

References Official Regulatory Classifier:

CWE

The mobile application vetting service maps vulnerabilities,

completed diagnostics, and/or other reporting facets to the

Common Weakness Enumeration (CWE) dictionary (Common

Weakness Enumeration, n.d.).

References Official Regulatory Classifier:

NIAP

The mobile application vetting service maps vulnerabilities,

completed diagnostics, and/or other reporting facets to National

Information Assurance Partnership Protection (NIAP) Profiles

(U.S. Government Approved Protection Profile - Protection

Profile for Application Software Version 1.2, 2016).

References Official Regulatory Classifier:

OWASP

The mobile application vetting service maps vulnerabilities,

completed diagnostics, and/or other reporting facets to Open Web

Application Security Project (OWASP) Mobile Top Ten Mobile

Risks (OWASP Mobile Security Project - Top 10 Mobile Risks,

2017).

6

Feature Name Feature Definition

Reports on network traffic The mobile application vetting service reports on observed network

traffic as part of the mobile application report.

7

3.2 Application Traits

Feature Name Feature Definition

Accesses battery Information The application requests permission to interrogate the operating

system concerning the current state of the battery.

Accesses Device Identifier The application accesses a unique identifier of the device

including

• Device’s name

• Universally Unique Identifier (UUID)

• Unique Device Identifier (UDID)

• International Mobile Subscriber Identity (IMSI)

• Subscriber Identity Module (SIM) serial number

Accesses fingerprint information The application requests permission to access the device’s

fingerprint subsystem.

Application Backup Interaction The application interacts with backup systems provided by the

mobile operating system. This behavior indicates the application

has the potential to export data to external sources.

Cryptographic Issues (Network) The application fails to ensure data is transmitted in properly

encrypted channel (see Cryptography Issues for potential causes).

Cryptographic Issues (Storage) The application fails to ensure data stored on the device is

properly encrypted (see Cryptography Issues for potential causes).

Cryptography Issues The application contains weaknesses or flaws that may affect

cryptography operations on the device. This can be the result of,

but are not limited to:

• Lack of encryption

• The detection of weak or broken ciphers and algorithms

• The detection of misconfigured random number

generators

Detects Debugging Status The application is configured to be examinable by a debugger.

Distributing an application in such a manner may make it easier to

reverse engineer and is against best practice.

Detects filesystem problems The application exhibits the potentially risky behavior of creating

or modifying files that can be read or written to by other processes

on the device. This behavior has the potential to jeopardize both

the confidentiality and integrity of data residing within the

application. Furthermore, it can expose the inner structure of an

application and enable easier reverse engineering.

This feature does not describe the ability of the application to

maliciously access files of other applications or the operating

system.

8

Feature Name Feature Definition

Detects hardcoded credentials The application stores passwords and/or cryptographic keys in an

accessible form within the application.

Detects if app is over-permissioned The application requests more functionality than is used.

Detects Insecure Password Practices The application fails to enforce best practices when requiring the

use of a password. This can be the result of:

• The use of passwords that fail to meet complexity and/or

length requirements

• The detection of passwords transmitted by the application

in plain text.

Detects Jailbreak/Root The application has the capability to detect if the device on which

it is running has been jailbroken.

Detects Native Code The application has been packaged with binary C or C++

executables and/or libraries

Detects Unsafe Compilation Settings The application has been compiled using parameters that may

introduce weaknesses and vulnerabilities in the resultant

application binary.

Dynamically loads code (Android) The application is constructed such that it may be possible to

obtain new, unvetted functionality from unknown sources while

the application is running.

Dynamically loads code (JavaScript) The application is constructed such that it can obtain new,

unvetted functionality in the form of remotely obtained JavaScript.

Examines/interacts with other applications The application requests some or all the following functionality:

• Starting or stopping other applications

• Examining what applications are currently installed on the

device

• Examining what applications are currently running on the

device

• Sending data to other applications via inter-application

systems defined by the operating system.

Executes Subshell (Android) The application executes operating system commands via a shell.

Executes system level commands (ios) The application executes low level or kernel level system

commands.

Exports system runtime information The application exports app crash data to third party analytic

entities.

Identifies ad network connections The application has the capability to make remote connections to a

known ad network(s).

9

Feature Name Feature Definition

Identifies cloud storage service

connections

The application has the capability to make remote connections to a

known cloud storage service(s).

Identifies Connections to Foreign

Countries

The application vetting service enumerates network connections

made to foreign countries.

Identifies explicit or named vulnerabilities The application vetting service makes explicit positive or negative

assertions as to the existence of known, named, and well-

characterized security vulnerabilities. This could include named

groups of vulnerabilities such as Stagefright or classes of

weaknesses such as structured query language (SQL) Injection.

Identifies Keychain Issues (iOS) The application is detected to use the device Keychain in an unsafe

manner.

Identifies social network interaction The application has the capability to make remote connections to a

known social network(s).

Identifies specific known malware The application vetting service makes explicit positive or negative

assertions as to the existence of known, named, mobile malware.

Identifies third party analytic connections The application has the capability to make remote connections to a

third-party usage analytic service.

Identifies third party libraries and APIs The application vetting service enumerates all detected third-party

programming libraries included in the application.

Identifies VPN Functionality The application has the capability to interact with virtual private

network (VPN) functionality on the device.

Implements Memory Protection (iOS) The application has been compiled using memory protection

safeguards.

Interacts with Apple Watch (iOS) The application interacts with the Apple Watch peripheral.

Interacts with Bluetooth The application requests access to the Bluetooth radio on the device.

Interacts with device accounts The application requests access to read or modify device user

account information

Interacts with device calendar The application requests access to read/write to/from the device

calendar.

Interacts with device camera The application requests access to the device camera.

Interacts with device contact list The application requests access to read/write to/from the contact

list.

Interacts with device health API The application requests access to health data provided by the

device.

Interacts with device microphone The application requests access to the device microphone.

10

Feature Name Feature Definition

Interacts with device photo storage The application requests access to the device photo library.

Interacts with device telephony service The application requests some or all the following capabilities:

• Making/accepting phone calls

• Examining the status of an ongoing call

Interacts with external storage The application can read and/or write to external sources on the

device. This may include removable storage locations.

Interacts with location services The application is noted to explicitly access one or more of the

location services provided by the device.

Interacts with Near Field Communication

(NFC) Radio

The application requests access to the device NFC radio.

Interacts with Short Message Service

(SMS)/Multimedia Messaging Service

(MMS) Services

The mobile application requests some or all the following

capabilities:

• Send SMS/MMS messages

• Read the contents of SMS/MMS messages

• Write/modify the contents of an SMS/MMS message

Interacts with system logs The mobile application can read or write from the system logs on

the device.

Interacts with USB interface The application has the capability to connect devices or peripherals

via the USB interface.

Interacts with Wi-Fi connections The application has requested the ability to monitor or change the

state of Wi-Fi radio.

References Official Regulatory Classifier:

CVE

The mobile application vetting service maps vulnerabilities,

completed diagnostics, and/or other reporting facets to the

Common Vulnerability Enumeration (CVE) database (National

Vulnerability Database, n.d.).

Requests device admin functionality The application explicitly requests the ability to assume

administrative control over the device.

Requests Internet Access The application explicitly requests the ability to access the internet.

4 Mobile Application Vetting Feature Analysis

The primary goal of the MASE is to gain a better understanding of the capabilities of mobile application

vetting services. To further this goal, using the features identified in sections 3.1 and 3.2, two analyses were

conducted. The first analysis counts the number of tools capable of identifying various mobile app features.

This analysis is detailed in section 4.1 The second counts the number of tools which identified the features

in our test cases. Note: the results show tool overlap, not ground truth. The results of this analysis are

11

detailed in 4.2

4.1 Analysis 1: Feature Vendor Coverage

Understanding the frequency with which a feature is represented among the participating tools helps to

illustrate how common a tool capability is when looking at the state of the art. Table 3 contains a count of

the number of tools capable of identifying the methods/methodologies identified in 3.1. Likewise, Table 4

contains a count of the number of tools capable of identifying the application traits identified in section 3.2

Each table subdivides its results by operating system. For each table, the maximum value that can be found

for each corpus corresponds to the number of vendors that can analyze applications in that category: 4 for

Android and 3 for iOS.

In terms of identified methods and methodologies, there was a reasonable amount of homogeneity among

the analysis tools, especially in the Android tools. Enumerating app permission requests is the most

prevalent analysis methodology, however application integrity methods, extracting raw string data,

reporting on network traffic, and evaluating TLS operation were also commonly employed. Vendors

evaluating the iOS corpus focused fewer times on enumerating app permissions, opting more to focus on

network analysis and TLS operations. The most disparity at the vendor level occurred with the frequency

in which they referred to any of the noted regulatory classifiers. In this vein, CVSS, NIAP, and OWASP

were favored over CVE and CWE.

Examining how many vendors counted each of the applications’ traits reveals which traits were common

capabilities among the participants. Figure 2 summarizes the distribution of how many application features

were discoverable by how many (0 to 4) of the participants. For instance, there were 12 iOS features that

no tools claimed to be able to identify and 3 that were identified by 3 tools. There were no features that

could be identified by all tools.

Figure 2 Mobile Application Vetting Service App Feature Capability Frequency Count

1

13
15

20

0

12

19
17

3

0
0

5

10

15

20

25

0 1 2 3 4

Fe
at

u
re

 C
o

u
n

t

Vetting Service Frequence

Mobile Application Vetting Service App Feature
Capability Frequency Count

Android iOS

12

Table 3 Vendor Count of Represented Features: Methods and Methodologies

Methods and Methodologies

of Vendors
expressing Feature

Capability

Android
Corpus

iOS
Corpus

App Integrity Measure 3 1

Assigns App Score 2 2

Enumerates App Permission Requests 4 1

Enumerates Package Filenames 2 2

Evaluates TLS operations 3 3

Extracts raw string data 3 2

Flags Potentially Undesirable Behavior 4 3

Provides App Descriptive Metadata 3 2

References Official Regulatory Classifier: CVE 1 0

References Official Regulatory Classifier: CVSS 2 2

References Official Regulatory Classifier: CWE 1 1

References Official Regulatory Classifier: NIAP 2 1

References Official Regulatory Classifier: OWASP 2 2

Reports on network traffic 3 2

Table 4 Vendor Count of Represented Features: Application Traits

Application Trait

of Participants
Expressing Feature

Capably

Android iOS

Accesses battery Information 2 0

Accesses Device Identifier 3 1

Accesses fingerprint information 1 1

Application Backup Interaction 1 1

Cryptographic Issues (Network) 3 3

Cryptographic Issues (Storage) 2 1

Cryptography Issues 3 3

Detects Debugging Status 2 1

Detects filesystem problems 2 1

Detects hard coded credentials 3 2

Detects if app is over permissioned 1 0

Detects Insecure Password Practices 2 2

Detects Jailbreak/Root 1 2

13

Application Trait

of Participants
Expressing Feature

Capably

Android iOS

Detects Native Code 2 1

Detects Unsafe Compilation Settings 0 2

Dynamically loads code (Android) 3

Dynamically loads code (JavaScript) 2 0

Examines/interacts with other applications 3 1

Executes as root 1 0

Executes Subshell (Android) 2

Executes system level commands (iOS)

2

Exports system runtime information 1 1

Identifies ad network connections 3 1

Identifies cloud storage service connections 2 2

Identifies Connections to Foreign Countries 2 2

Identifies explicit or named vulnerabilities 3 2

Identifies Keychain Issues (iOS)

1

Identifies potential PII exposure 1 1

Identifies social network interaction 3 2

Identifies specific known malware 1 2

Identifies third party analytic connections 2 1

Identifies third party libraries and APIs 3 2

Identifies VPN Functionality 1 1

Implements Memory Protection (iOS) 1

Interacts with Apple Watch (iOS) 1

Interacts with Bluetooth 3 2

Interacts with device accounts 2 0

Interacts with device calendar 3 2

Interacts with device camera 3 2

Interacts with device contact list 3 3

Interacts with device health API 1 1

Interacts with device microphone 3 2

Interacts with device photo storage 1 0

Interacts with device telephony service 3 1

Interacts with external storage 2 0

Interacts with location services 3 2

Interacts with Near Field Communication (NFC) Radio 2 0

Interacts with SMS/MMS Services 3 2

Interacts with system logs 3 0

Interacts with USB interface 1 0

14

Application Trait

of Participants
Expressing Feature

Capably

Android iOS

Interacts with Wi-Fi connections 2 0

Requests device admin functionality 1 0

Requests Internet Access 3 1

15

4.2 Analysis 2: Application Trait Identification Per Application

Analysis 2 describes how many vendors identified the existence of each trait within each of the application

test cases. All 4 participating vendors supported analysis for Android applications. Therefore, the largest

possible count for each of the application traits in the Android corpus (App IDs 1 to 9) is 4. There is an

exception however for App ID 3, as the report for this application was damaged and could not be included

in the analysis for one participating vendor. This renders the maximum value for this column 3. All but one

of the participating vendors had the capability to analyze iOS applications. Therefore, the largest possible

count for each of the application traits in the iOS corpus (App IDs 10 to 18) is 3. Table 6 captures the results

of this analysis.

There are two conclusions that can be made from this analysis. The first shows the amount of consensus

between the participants concerning the existence of an application trait1. There are two values that

represent consensus, the first being the consensus that an application trait is not expressed by an application

which is represented by a count of 0. The second value indicates a consensus that an application trait is

represented by an application. This value is represented by a count of 4 for Android and 3 for iOS2. Any

value other than these represents disparity amongst the mobile application vetting services concerning the

existence of an application trait.

The second conclusion shown by the analysis conveys the frequency of application traits as they appear in

the data set.

Among the test case set the following attributes were observed to occur with the highest frequency within

the application corpuses:

Table 5 Ten Highest Observed Frequency Application Traits

Highest Frequency Android Application Traits Highest Frequency iOS Application Traits

Requests Internet Access Identified explicit or named vulnerabilities

Interacts with location services Detects Debugging Status

Cryptography Issues Interacts with location services

Interacts with device telephony service Interacts with device camera

Interacts with device contact list Interacts with device contact list

Interacts with SMS/MMS Services Cryptographic Issues (Network)

Interacts with device camera Requests Internet Access

Identifies social network interaction Detects Native Code

Interacts with device microphone Identifies ad network connections

Interacts with device accounts Detects hard coded credentials

1 An important note concerning the analysis: the count associated with each application trait and application is not the count of the

number of occurrences of said trait within the application. Rather, it is the count of the number of vendors that identified a

trait’s existence within a given application.

2 Note, a full consensus does not exist in the data set for either corpuses

16

Table 6 Vendor Application Traits Counts Grouped by Application

Application Traits

Android Corpus

A
n

d
ro

id
 S

u
m

s

iOS Corpus

iO
S

Su
m

s

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Accesses battery Information 2 0 2 2 2 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0

Accesses Device Identifier 2 2 2 2 2 1 1 3 2 17 1 1 0 1 1 1 1 1 1 8

Accesses fingerprint information 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 3

Application Backup Interaction 1 1 1 1 1 1 1 1 0 8 1 0 0 0 0 1 0 0 1 3

Cryptographic Issues (Network) 1 2 1 2 3 1 1 2 2 15 1 1 2 0 0 2 1 2 2 11

Cryptographic Issues (Storage) 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Cryptography Issues 3 3 3 3 3 3 3 3 2 26 0 0 0 0 0 0 0 0 0 0

Detects Debugging Status 1 1 1 1 1 1 1 1 0 8 2 2 0 0 1 2 2 2 2 13

Detects filesystem problems 1 1 1 1 1 1 1 1 0 8 0 0 0 0 0 0 0 0 0 0

Detects hard coded credentials 0 1 0 2 1 0 2 1 1 8 1 1 1 1 1 1 1 1 1 9

Detects if app is over permissioned 1 1 1 1 1 1 1 1 0 8 0 0 0 0 0 1 0 0 0 1

Detects Insecure Password Practices 0 0 0 1 2 1 2 2 0 8 0 0 0 0 0 0 0 0 0 0

Detects Jailbreak/Root 0 0 0 0 1 0 0 0 1 2 0 0 0 0 0 1 0 1 1 3

Detects Native Code 2 2 2 2 2 2 2 2 2 18 1 1 1 1 1 1 1 1 1 9

Detects Unsafe Compilation Settings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Dynamically loads code (Android) 2 2 2 3 2 1 2 2 1 17

Dynamically loads code (JavaScript) 1 2 2 1 2 2 2 2 1 15 0 0 0 0 0 0 0 0 0 0

Examines/interacts with other applications 2 3 1 2 2 2 2 1 3 18 1 0 1 1 0 1 0 1 1 6

Executes as root 0 0 0 0 1 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0

Executes Subshell (Android) 1 2 1 2 1 1 1 1 2 12

Executes system level commands (iOS) 0 1 1 0 1 1 1 1 1 0 7

Exports system runtime information 0 1 0 0 1 0 0 1 0 3 0 0 0 0 0 1 0 0 1 2

17

Application Traits

Android Corpus

A
n

d
ro

id
 S

u
m

s

iOS Corpus

iO
S

Su
m

s

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Identified explicit or named vulnerabilities 1 1 1 1 1 1 1 1 0 8 2 3 1 1 3 3 3 3 2 21

Identifies ad network connections 0 2 0 2 3 2 3 2 2 16 1 1 1 1 1 1 1 1 1 9

Identifies cloud storage service connections 0 1 0 0 1 0 0 0 1 3 1 0 0 0 0 1 0 1 0 3

Identifies Connections to Foreign Countries 1 1 1 1 1 1 1 1 1 9 0 1 0 0 0 0 1 0 0 2

Identifies Keychain Issues (iOS) 0 1 0 1 1 1 1 1 1 1 8

Identifies potential PII exposure 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 5

Identifies social network interaction 2 2 1 3 3 1 2 3 3 20 1 1 0 1 0 1 1 1 1 7

Identifies specific known malware 0

Identifies third party analytic connections 0 2 0 1 2 1 1 0 1 8 0 0 0 1 2 1 1 1 0 6

Identifies third party libraries and APIs 1 1 1 1 2 1 1 2 1 11 0 0 0 0 0 0 0 0 0 0

Identifies VPN Functionality 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Implements Memory Protection (iOS) 0 1 1 1 1 1 1 1 1 1 9

Interacts with Apple Watch (iOS) 0 0 0 0 0 1 0 1 0 0 2

Interacts with Bluetooth 0 3 3 3 3 3 3 0 0 18 2 0 0 0 2 0 0 0 0 4

Interacts with device accounts 2 2 2 2 2 2 2 2 2 18 0 0 0 0 0 0 0 0 0 0

Interacts with device calendar 3 0 0 3 0 0 0 0 0 6 0 2 0 0 2 0 2 0 0 6

Interacts with device camera 3 3 3 3 0 3 1 3 3 22 2 1 0 1 1 2 1 2 2 12

Interacts with device contact list 3 3 3 3 3 3 3 3 1 25 0 2 0 2 0 1 3 2 1 11

Interacts with device health API 0

Interacts with device microphone 3 1 3 1 3 3 3 0 3 20 2 0 0 0 0 1 2 2 1 8

Interacts with device photo storage 0

Interacts with device telephony service 2 3 3 3 3 3 3 3 3 26 0 0 0 0 0 0 0 0 0 0

Interacts with external storage 2 2 2 2 2 2 2 2 2 18 0 0 0 0 0 0 0 0 0 0

Interacts with location services 3 3 3 3 3 3 3 3 3 27 2 0 2 1 2 2 2 0 1 12

18

Application Traits

Android Corpus

A
n

d
ro

id
 S

u
m

s

iOS Corpus

iO
S

Su
m

s

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Interacts with Near Field Communication
(NFC) Radio 0 0 2 0 0 0 2 0 0

4
0 0 0 0 0 0 0 0 0 0

Interacts with SMS/MMS Services 3 3 3 3 3 3 1 3 1 23 0 0 0 1 0 2 1 1 0 5

Interacts with system logs 0 3 3 2 3 0 1 0 0 12 0 0 0 0 0 0 0 0 0 0

Interacts with USB interface 0 0 0 0 0 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0

Interacts with Wi-Fi connections 2 2 2 2 2 2 2 2 2 18 0 0 0 0 0 0 0 0 0 0

Requests device admin functionality 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Requests Internet Access 3 3 3 3 3 3 3 3 3 27 1 1 1 1 1 1 1 1 1 9

19

5 Conclusion

Mobile application vetting services have a wide range of capabilities. The MASE project identified 67

features of mobile app vetting services that describe their capabilities. The project divided these features

into two subsets: Methods/Methodologies mobile application vetting services employ to analyze and

describe their findings; and application traits that describe the existence of a characteristic intrinsic to the

application.

The features used to analyze mobile applications vary from vendor to vendor. Furthermore, the features

used to analyze Android and iOS application differ slightly even for the same vendor. However, generally

the vendors focus their methodologies on:

• Enumerating application permissions

• Evaluating network traffic

• Evaluating TLS operations

• Extracting raw string data from the application binary

Many of the commonly identifiable application attributes in the participants’ repertoire included identifying

when an application interacted with an operating system service (calendar, contact list, photo storage, SMS,

etc.) or device peripheral (cameras, Bluetooth radios, external storage, etc.). Detecting the existence of hard

coded credentials was also a common attribute of mobile application vetting services.

5.1 Recommendations and Future Work

5.1.1 Building mobile application test cases

Ascertaining the true capabilities of a mobile application vending service requires first having ground truth

concerning what is being analyzed. Currently, a robust set of mobile application test cases for use in

statistically analyzing vetting service performance does not exist. Due to the diversity in mobile platforms

and speed of change of these platforms, building and maintaining a set of mobile applications for use as

test cases is a challenging task. It is the recommendation of the MASE project that the organization(s) set

out to build and maintain such a set to further the evaluative capacity of mobile application vetting services

in the future.

5.1.2 Software Assurance Tool Exposition (SATE) for Mobile

The Software Assurance Tool Exposition (SATE) is a noncompetitive exercise maintained and run by the

Software Assurance Metrics and Tool Evaluation (SAMATE) group at the National Institute of Standard

and Technology (NIST). It is designed to advance the state-of-the-art in tools that find security-related

defects in software applications. As of the time of this writing, preparations are underway for the sixth

iteration of the SATE. This marks the first iteration with a sub-track, specifically targeting mobile

applications. This track represents a logical extension to the efforts made as part of the MASE as it will

focus on the rate with which mobile application vetting services successfully identify vulnerabilities

intentionally seeded into a set of mobile application [8].

20

Appendix A - Glossary

Application Permission In the current application developer paradigm, applications must request

access to data and services provided by either the application’s host

operating system or other applications that live along-side them. An

application permission represents a declarative request made by the

developer of an application to be granted access to said data or service [9]

[10].

Feature A mobile application vetting service capability represented as either an

analysis method/methodology or the ability to identify a particular mobile

application trait

Mobile Application Vetting

The process of verifying that an app meets an organization's security

requirements. An app vetting process comprises app testing and app

approval/rejection activities (Quirolgico, Voas, Karygiannis, Michael, &

Scarfone, 2015).

Mobile Application Vetting

Service

An entity that engages in the mobile application vetting process on behalf of

another organization.

21

Appendix B - References

[1] "National Vulnerability Database," National Institute of Standards and Technology

(NIST), [Online]. Available: https://nvd.nist.gov/.

[2] "Common Vulnerability Scoring System SIG," Forum of Incident Response and

Security Teams (FIRST), [Online]. Available: https://www.first.org/cvss/.

[3] "Common Weakness Enumeration," MITRE Corporation, [Online]. Available:

https://cwe.mitre.org/.

[4] "U.S. Government Approved Protection Profile - Protection Profile for Application

Software Version 1.2," National Information Assurance Partnership (NIAP), 22 04

2016. [Online]. Available: https://www.niap-ccevs.org/pp/pp_app_v1.2.htm.

[5] "OWASP Mobile Security Project - Top 10 Mobile Risks," Open Web Applicatio

Security Project (OWASP), 27 April 2017. [Online]. Available:

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10

_Mobile_Risks.

[6] S. Quirolgico, J. Voas, et. al, Vetting the Security of Mobile Applications, NIST

Special Publication (SP) 800-163, National Institute of Standards and Technology,

Gaithersburg, Maryland, June 2015, 37pp. http://dx.doi.org/10.6028/NIST.SP.800-

163.

[7] G Howel and M. Ogata, Mobile Application Vetting Services for Public Safety, NISTIR

8136, National Institute of Standards and Technology, Gaithersburg, Maryland, June

2016, 13pp. https://doi.org/10.6028/NIST.IR.8136.

[8] Static Analysis Tool Exposition VI (SATE VI), Software Assurance Metrics and

Tool Evaluation (SAMATE) [Website], https://samate.nist.gov/SATE6.html

[accessed 12/07/17].

[9] System Permissions, Google Developer Program [Website],

https://developer.android.com/guide/topics/permissions/index.html [accessed

12/07/17].

[10] Requesting Permissions, Apple Developer Program [Website],

https://developer.apple.com/ios/human-interface-guidelines/app-

architecture/requesting-permission/ [accessed 12/07/17].

http://dx.doi.org/10.6028/NIST.SP.800-163
http://dx.doi.org/10.6028/NIST.SP.800-163
https://doi.org/10.6028/NIST.IR.8136
https://samate.nist.gov/SATE6.html
https://developer.android.com/guide/topics/permissions/index.html
https://developer.apple.com/ios/human-interface-guidelines/app-architecture/requesting-permission/
https://developer.apple.com/ios/human-interface-guidelines/app-architecture/requesting-permission/

